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Abstract
The apolipoprotein E (APOE) ε4 allele is a genetic risk factor for Alzheimer’s disease, whereas educational attainments have
protective effects against cognitive decline in aging and patients with Alzheimer’s disease. We examined the possible effects of
years of education and APOE genotype on the topological properties of the functional network in normal aging, mild cognitive
impairment and Alzheimer’s disease. The years of education showed a significant, negative association with the local efficiency,
clustering coefficient and small-worldness of functional networks in APOE ε4 noncarriers but not in ε4 carriers. These associ-
ations weremainly observed in normal aging and were reduced inmild cognitive impairment and Alzheimer’s disease.Moreover,
regions of the inferior frontal gyrus, temporal pole, and cuneus also showed correlations between education and nodal degree.
Our findings demonstrated that the protective effects of education persist in APOE ε4 noncarriers but diminish in ε4 carriers. In
addition, the protective effects of education were attenuated or reduced in the progression of Alzheimer’s disease.
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Introduction

Alzheimer’s disease (AD), a progressive neurodegenerative
disease associated with cognitive decline, is the most common

form of dementia in the elderly population (Masters et al.
2015).Mild cognitive impairment (MCI) is a transitional stage
between normal aging and AD and is considered a prodromal
phase of AD (Albert et al. 2011) with a high risk of dementia.

Data used in preparation of this article were obtained from the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) database
(adni.loni.usc.edu). As such, the investigators within the ADNI contrib-
uted to the design and implementation of ADNI and/or provided data but
did not participate in analysis or writing of this report. A complete listing
of ADNI investigators can be found at: http://adni.loni.usc.edu/wp-
content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
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Previous studies have found that risk factors of AD range from
genetics to environmental influences (Masters et al. 2015;
Reitz and Mayeux 2014). Among these factors, the apolipo-
protein E (APOE) ε4 allele is the most relevant genetic risk
factor for AD (Farrer et al. 1997; Karch and Goate 2015; Reitz
and Mayeux 2014). There exist three major polymorphic
APOE alleles (ε2, ε3 and ε4) on chromosome 19, correspond-
ing to 6 phenotypes (ε2/ε2, ε2/ε3, ε2/ε4, ε3/ε3, ε3/ε4 and ε4/
ε4) (Farrer et al. 1997; Liu et al. 2013) in humans. Individuals
who carry at least one APOE ε4 allele (including ε2/ε4, ε3/ε4
and ε4/ε4) exhibit an increased risk and an earlier age at onset
of AD compared with noncarriers (Albert et al. 2011; Liu et al.
2013). APOE gene regulates amyloid β (Aβ) oligomerization
and aggregation in the brain (Karch and Goate 2015).
Previous studies have found that compared with APOE ε4
noncarriers, ε4 carriers exhibit greater Aβ deposition during
normal aging, MCI and AD (Farlow et al. 2004; Honea et al.
2009; Jack et al. 2015; Liu et al. 2013). Furthermore, the
APOE in human cerebrospinal fluid was found to bind specif-
ically to immobilized Aβ peptide (Selkoe 2005). These results
established a link between APOE ε4 and increased risk of Aβ.
In turn, Aβ deposition may result in more severe brain atro-
phy, especially around the medial temporal lobe (den Heijer
et al. 2002; Manning et al. 2014), and increase the risk of
cognitive impairment and dementia (Jack et al. 2015). Thus,
this risk-related polymorphism has been proposed as a poten-
tial target for the identification of individuals at higher risk of
developing dementia (Wolk and Mahley 2010).

The APOE ε4 genotype is one of the multiple factors that
may affect the progression of AD. Additionally, educational
attainment plays an important role in aging and has been re-
lated to the concept of cognitive reserve. Cognitive reserve
refers to the brain’s ability to use pre-existing cognitive-pro-
cessing approaches or compensatory mechanisms when cop-
ing with brain pathology or during the execution of cognitive
tasks (Stern 2009). Epidemiological studies suggest that life-
style factors, including educational and occupational attain-
ment, leisure activities, and intelligence quotient (IQ)
(Martinez et al. 2018; Stern 2009), can increase cognitive
reserve and protect against cognitive decline and brain atrophy
during healthy aging (Arenaza-Urquijo et al. 2013; Mungas
et al. 2018; Posner and Rothbart 2005; Stern 2012; Tucker and
Stern 2011) and AD (Amieva et al. 2014; Scarmeas et al.
2003; Xu et al. 2016). Educational attainment is one of the
most studied proxy measures of cognitive reserve and can
shape the neural networks of the brain (Arenaza-Urquijo
et al. 2013; Barulli and Stern 2013; Cheng 2016; Marques
et al. 2016; Perry et al. 2017; Posner and Rothbart 2005;
Stern 2006). The dementia risk was reduced by increasing
education (Xu et al. 2016), and education could provide pro-
tection against cognitive decline until the pathology of AD
became more severe (Amieva et al. 2014; Franzmeier et al.
2017; Xu et al. 2016). The protective role of education against

age-related or pathological changes in cognition has also been
documented by neuroimaging studies. For example, individ-
uals with higher education have a greater capacity to counter-
act impacts on gray matter integrity and cortical thickness in
normal aging, MCI and AD (Franzmeier et al. 2018; Liu et al.
2012; Serra et al. 2011; Stern 2012). In addition, studies in-
vestigating pathophysiological markers have found that
higher levels of education are associated with a greater inhib-
itory effect against Aβ deposition before the preclinical stage
(Arenaza-Urquijo et al. 2017; Yasuno et al. 2015).

Otherwise, the role of genotype-by-education interactions
for cognitive function has gained interest. For example, re-
searchers investigated the interaction effects between the
Short Portable Mental Status Questionnaire scores and
APOE genotype from the MacArthur Study of Successful
Aging and observed a reduced protective effects of education
in APOE ε4 carriers (Seeman et al. 2005). Also, the protective
effects of education were attenuated or reduced in APOE ε4
carriers of normal aging, which may be correlated with the
rapid decline in cognitive performance (López et al. 2018;
Winnock et al. 2002). These findings suggest that both the
education and APOE ε4 appear to be associated with cogni-
tive performance via different neuropsychological tests.

In additional to measuring the neuropsychological tests,
recent developments in the analysis of complex networks with
graph theory have enabled the quantitative characterization of
the topological properties of brain networks (Bullmore and
Sporns 2009; Deco et al. 2015; Sporns 2011; Yan et al.
2019). Previous studies have found that small-worldness to-
pologies are disrupted in both MCI and AD patients (Vecchio
et al. 2014; Wang et al. 2016; Zhao et al. 2012). In previous
studies, using resting-state functional magnetic resonance im-
aging (fMRI), the APOE genotype has been found to modu-
late brain network properties (Zhao et al. 2012) and exhibit
dissociable effects on memory and attentional-executive net-
work in AD (Wolk and Mahley 2010). In addition, APOE ε4
allele genotype leads to distinct default mode network func-
tional alterations (Chiesa et al. 2019). Moreover, a study in-
vestigating anatomical cortical networks observed that com-
pared with noncarriers, APOE ε4 carriers exhibit a less opti-
mal topological organization of brain networks with increased
clustering coefficient and path lengths (Mohammed et al.
2015). In contrast to the deterioration effects, existing research
suggests that education has obvious protective effects on brain
networks (Arenaza-Urquijo et al. 2013; Franzmeier et al.
2017, 2018; Marques et al. 2016), including an association
between higher education and greater functional connections
and network efficiency (Marques et al. 2016). In other studies,
cognitive reserve (measured as the years of education and IQ)
was found to moderate the association between functional
network and memory in MCI (Franzmeier et al. 2017).
Furthermore, a magnetoencephalographic functional network
study found a negative correlation between synchronization of
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the whole network and cognitive reserve (Martinez et al.
2018). Consistent with previous studies (Franzmeier et al.
2018; López et al. 2018; Seeman et al. 2005), the APOE ε4
allele and years of education exhibited contrasting effects on
brain networks, respectively. However, the mechanisms of
functional brain networks that underlie these possible interac-
tions between education and the APOE genotype remain
largely unknown in the AD spectrum.

The Alzheimer’s Disease Neuroimaging Initiative (ADNI)
database is open and contains both APOE genotype and edu-
cation information of the AD spectrum, which provides ad-
vantages to explore the potential mechanisms of the genotype,
education, and genotype-by-education effects on the function-
al brain network properties. In the present study, we used the
data from ADNI2 to explore the possible genotype-by-
education effects on functional brain networks. The resting-
state fMRI method and graph theoretical analysis were used to
quantitatively characterize the topological properties of func-
tional brain networks, including small-worldness properties,
global and local efficiency, and nodal degree. Spearman cor-
relation analysis was used to measure the associations be-
tween the years of education and network properties in differ-
ent APOE states (APOE ε4 noncarriers and ε4 carriers) in the
progression of AD (normal aging, MCI and AD).
Furthermore, we examined the genotype, education, and
genotype-by-education interaction differences by using an
ANCOVA analysis among normal aging, MCI, and AD.

Methods

Participants

Data used in the preparation of this article were obtained from
the Alzheimer’s Disease Neuroimaging Initiative (ADNI) da-
tabase (adni.loni.usc.edu). The ADNI was launched in 2003
as a public-private partnership, led by Principal Investigator
Michael W. Weiner, MD. The primary goal of ADNI has been
to test whether serial magnetic resonance imaging (MRI), pos-
itron emission tomography (PET), other biological markers,
and clinical and neuropsychological assessment can be com-
bined to measure the progression of mild cognitive impair-
ment (MCI) and early Alzheimer’s disease (AD). For up-to-
date information, see www.adni-info.org.

Subjects of normal aging, MCI and AD from ADNI2 with
initial or first screening visits were chosen in this study.
Briefly, the normal aging group had no memory complaints
and exhibited normal cognitive performance on the mini-
mental state examination (MMSE); the MCI group had self-
reported memory complaints, exhibited an MMSE total score
greater than 24, and displayed preserved daily functioning,
thus failing to meet the diagnostic criteria for AD. The clinical
dementia rating (CDR) scores of normal aging, MCI and AD

subjects were 0, 0.5 and 1, respectively. The ADNI2 collected
blood samples for DNA and RNA extraction. APOE genotyp-
ing was performed on 85 genomic DNAs using the Illumina
HumanOmniExpress BeadChip, which contains 730,525 SNP
markers, according to the manufacturer’s protocols. This
study used baseline or screening data from cognitive assess-
ments, including the functional activity questionnaire (FAQ),
MMSE, geriatric depression scale (GDS), CDR and neuropsy-
chiatric inventory questionnaire (NPI_Q).

In the present study, we selected the data of 110 partici-
pants, including 25 normal aging, 57MCIs and 28 ADs. Also,
there were 57 ε4 noncarriers (ε2/ε2, ε2/ε3 and ε3/ε3) and 53
ε4 carriers (ε2/ε4ε, 3/ε4 and ε4/ε4). Table 1 illustrates clinical
assessments and demographic information, including subjects
for whom fMRI data were acquired, and presents information
regarding the APOE genotype and years of education.

Imaging acquisition

The functional and structural magnetic resonance imaging
(MRI) data were both collected according to the ADNI acqui-
sition protocol using three-Tesla (3 T) scanners. We used data
only from the Philips scanner to ensure consistency of data
acquisition parameters. High-resolution 3D T1-weighted MR
images were acquired on a 3.0 T Philips scanner using the
ADNI2 (8-channel coil, TR = 6.8 ms, TE =3.16 mm, flip-an-
gle = 9°, slice thickness = 1.2 mm, resolution = 256 × 256 mm
and FOV = 26 cm). The acquisition plane of MRI data was
SAGITTAL plane. The resting-state fMRI data of each subject
consisted of 140 functional volumes and were acquired using
the following parameters: repetition time (TR) = 3000 ms;
echo time (TE) = 30 ms; flip angle = 80°; slice thickness =
3.313 mm; and 48 slices. All subjects were instructed to keep
their eyes closed but not fall asleep, relax their minds, and
move as little as possible during the data acquisition.

Data prepocessing

The data preprocessing was conducted using SPM8 (http://
www.fil.ion.ucl.ac.uk/spm/) and the Data Processing
Assistant for Resting-State fMRI (DPARSF, http://www.
restfmri.net/forum/dparsf). For each run, the first ten time
points were discarded to account for signal equilibrium and
the adaptation of participants to the circumstances. The
remaining functional images were first corrected for timing
and then realigned to the first volume to correct for head
motion, which did not exceed 2.0 mm of displacement or 2.
0° of rotation in any direction in any subject. Subsequently,
the functional images were spatially normalized to the
Montreal Neurological Institute (MNI) template and
resampled to a voxel size of 3 × 3 × 3 mm3. Then, temporal
bandpass filtering (0.01 Hz ≤ f ≤ 0.1 Hz) was performed to
reduce the effects of low-frequency drift and high-frequency
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noise. To reduce the effects of motion and nonneuronal blood
oxygen level-dependent (BOLD) fluctuations, head motion,
the cerebrospinal fluid (CSF) signal and white matter signals
were further removed as nuisance covariates (Seeman et al.
2005). Finally, the fMRI images were smoothed using a
Gaussian filter with a full width at half maximum (FWHM)
of 4 mm.

Construction of functional brain network

After data preprocessing, regions based on the anatomical
automatic labeling (AAL; http://www.cyceron.fr/freeware/)
(Tzourio-Mazoyer et al. 2002) brain template were extracted
per subject. The AAL brain template contains 90 regions of
cerebrum and 26 regions of cerebellum. In this study, we
focused on brain network analysis of the cerebrum. The
fMRI time series was computed in each of 90 regions by
averaging all voxels within each region at each time point in
the time series, resulting in 130 time points with 90 anatomical
regions for each subject. Then, these time series were used to
construct a 90-node whole-brain functional connectivity net-
work by calculating the Pearson correlation coefficient in the
residual time courses between each pair of regions of interest
(ROIs), and then a 90×90 correlation matrix was obtained for
each subject. Finally, each correlation matrix was repeatedly
thresholded into a binarized matrix with a wide range of spar-
sity (10% to 40%) with intervals of 0.01. Through this thresh-
old, unweighted graphs were obtained in which the nodes
represent the brain regions and the edges represent the

functional relationships between brain regions. Further net-
work analysis was based on the 90 × 90 binarized matrixes
of each subject.

Graph theory analysis of functional brain network

Graph theory analysis was performed by using GRETNA
software (http://www.nitrc.org/projects/gretna/). The network
architecture was investigated at both global and regional
levels in the constructed resting-state functional brain net-
works. Compared with random networks, small-worldness
was originally proposed by Watts and Strogatz to have higher
local clustering and equivalent characteristic path length. In
this work, we calculated the small-worldness of the binarized
brain networks with a wide range of sparsity (Tzourio-
Mazoyer et al. 2002). The seven network matrixes were
adopted to characterize the global topological organization
of the brain networks, including clustering coefficient, Cp
(representing that neighbors of the node are also neighbors
each other); characteristic path length, Lp (representing the
average of the shortest path lengths of all the nodes in the
network); normalized clustering coefficient, γ; normalized
characteristic path length, λ; small-worldness, sigma, σ = γ/
λ (representing the functional integration and segregation);
global efficiency, Eg (representing the functional integration
of a network); and local efficiency, Eloc (a measure of the
functional segregation). Typically, to diagnose small-
worldness properties, the characteristic path length and clus-
tering coefficient were compared with corresponding values

Table 1 Demographic and clinical characteristics of the samplesa

Measure Normal Aging MCI AD P valueb

ε4- ε4+ ε4- ε4+ ε4- ε4+ Diag Gene Inter

Demographics

Number 16 9 34 23 7 21 0.004c – –

Age 76(7) 72(5) 72(8) 72(5) 68(7) 74(7) 0.31 0.70 0.11

Education 16(2) 17(2) 16(2) 16(3) 16(3) 15(3) 0.25 0.88 0.46

Gender (M/F) 8/8 2/7 20/14 12/11 3/4 14/7 0.28 0.87 –

General cognition

FAQ 0.3(0.6) 0.0(0.0) 3.0(3.6) 5.0(5.9) 16(9.7) 15(7.0) <0.001 0.78 0.49

MMSE 29(1.1) 29(1.7) 28(1.6) 27(1.9) 22(2.4) 23(2.5) <0.001 0.52 0.06

GDS 0.4(0.6) 0.6(1.1) 1.6(1.5) 2.1(1.9) 1.7(1.6) 1.5(1.0) 0.001 0.64 0.60

CDR 0.0(0.0) 0.0(0.0) 0.5(0.1) 0.5(0.0) 0.9(0.2) 0.8(0.2) <0.001 0.92 0.85

NPI_Q 1.0(1.7) 0.3(0.5) 2.5(3.2) 3.6(3.5) 4.1(4.7) 3.8(3.9) 0.002 0.98 0.46

Abbreviations: MCI mild cognitive impairment, AD Alzheimer’s disease, ε4- APOE ε4 noncarriers, ε4+ APOE ε4 carriers, FAQ functional activity
questionnaire,MMSEmini-mental state examination, GDS geriatric depression scale, CDR clinical dementia rating, NPI_Q neuropsychiatric inventory
questionnaire
a Data are expressed as the mean (SD)
bP value was obtained via a two-way analysis of covariance (ANCOVA)
c The χ2 test was used to analyze APOE percentage difference among normal aging, MCI and AD
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(Crandom, Lrandom) and averaged across 100 random networks
with the same number of nodes and degree distribution.
Small-worldness is characterized by a high normalized clus-
tering coefficient γ (Cp/Crandom) > 1 and low normalized char-
acteristic path length λ (Lp/Lrandom) ~ 1 compared to random
networks. Thus, the value of small-worldness is greater than 1.
Simply, the topological properties of Lp, λ and Eg are consid-
ered measures of functional integration. The high Eg repre-
sents the strong ability of parallel information transfer in the
network. The abilities of segregation and error tolerance of a
network can be expressed as Cp, γ and Eloc. A network with
high Eloc shows good robustness to the deletion of individual
nodes. Moreover, the nodal degree was computed to examine
the regional characteristics of each cortical region in the func-
tional networks (Watts and Strogatz 1998). Here, we provide
an overview of definitions and brief interpretations of the pa-
rameters (Supplementary Table 1).

Statistical analysis

All statistical analyses were performed using SPSS 19 soft-
ware (SPSS, Inc., Chicago, IL). The age, years of education
and clinical information were compared using a two-way anal-
ysis of variance (ANOVA) with factors of genotype (APOE ε4
carriers and noncarriers) and diagnosis (normal aging, MCI
and AD). The gender was analyzed using a χ2 test. The χ2 test
was also used to analyze APOE percentage differences among
normal aging, MCI and AD. The results were considered sig-
nificant at the level of P < 0.05.

Spearman correlation was used to analyze associations be-
tween the years of education and network properties. The
correlation results of nodal degree were then corrected by false
discovery rate (FDR, P < 0.05). If any significant correlations
were observed between education and properties, a two-way
analysis of covariance (ANCOVA) was used to determine the
genotype, education, and genotype-by-education interaction
differences with the factor of genotype (APOE ε4 carriers
and noncarriers) and covariates of the years of education, gen-
der, and age. Furthermore, we determined the genotype, edu-
cation and interaction effects on these significant interacting
properties among normal aging, MCI, and AD.

Results

Demographic and neuropsychological variables

The effects of diagnosis and APOE ε4 carrier status on the
demographics and clinical performances are presented in
Table 1. The six subgroups did not differ in age, education
or gender (all P > 0.05). The APOE ε4 percentage differed
among NC, MCI and AD (P = 0.004), consistent with a high
genetic risk at onset of AD in APOE ε4 carriers (Farrer et al.

1997; Liu et al. 2013). Unsurprisingly, the clinical and neuro-
psychological test performances significantly differed among
the diagnostic groups (all P < 0.005). No significant effect of
the APOE genotype or interaction effect was observed on any
cognitive measure.

Relationships between the years of education
and global properties

We found that the years of education were significantly, neg-
atively correlated with the local efficiency (Eloc), clustering
coefficient (Cp), normalized clustering coefficient (γ) and
small-worldness (σ) (Fig. 1, all P < 0.05) by using Spearman
correlation analysis. However, these correlations were absent
in APOE ε4 carriers (Fig. 1a, Fig. 2). We further investigated
the heterogeneity of the association in the normal aging, MCI
and AD groups. In APOE ε4 noncarriers, significant educa-
tional correlations on the normalized clustering coefficient
and small-worldness (all P < 0.05) were observed in normal
aging and MCI groups and local efficiency in normal aging
(Fig. 1b).

To determine educational effects in detail, a two-way
ANCOVAwas used to determine the main effects of genotype
and education and genotype-by-education interaction differ-
ences in significantly correlated properties via Spearman cor-
relation. As shown in Table 2, we found significant differ-
ences based on education in the normalized clustering coeffi-
cient (γ, F = 7.169, P = 0.009), small-worldness (σ, F = 6.497,
P = 0.012), and local efficiency (Eloc, F = 4.018, P = 0.048).
Additionally, significant genotype differences were observed
in the normalized clustering coefficient (γ, F = 4.271, P =
0.041) and small-worldness (σ, F = 5.930, P = 0.017).
Moreover, significant interaction effects were found in the
normalized clustering coefficient (γ, F = 5.349, P = 0.023)
and small-worldness (σ, F = 7.187, P = 0.009). The local effi-
ciency (Eloc, F = 2.871, P = 0.093) showed a marginally sig-
nificant effect, but the effect of the clustering coefficient was
not significant. Furthermore, we determined interaction differ-
ences in the normalized clustering coefficient, small-
worldness, and local efficiency among normal aging, MCI
and AD, respectively (Fig. 2). However, no interaction effect
was observed in any group (all P > 0.05).

Relationships between the years of education
and nodal properties

Through a Spearman correlation analysis, we found signifi-
cant correlations between the years of education and nodal
degree in the noncarriers but not in the carriers (Table 3). As
shown in Fig. 3 and Fig. 4, significant, negative correlations
were observed in seven regions predominantly located in the
left orbital part of the inferior frontal gyrus [ORBinf], the
bilateral parahippocampal gyrus [PHG], the left amygdala
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[AMYG], the right superior temporal gyrus (temporal)
[TPOsup] and the bilateral middle temporal pole (temporal)
[TPOmid] (all P < 0.05, FDR-corrected). Furthermore, in nor-
mal aging, the years of education was significantly and nega-
tively correlated with the nodal degree in the regions of the
AMYG.L, TPOsup.R and TPOmid.R. Moreover, MCI pa-
tients showed significant and negative correlations in the
PHG.L and TPOmid.R. Additionally, the bilateral cuneus
[CUN] regions showed significant and positive correlations
between education and the nodal degree (both P < 0.05,
FDR-corrected).

Using ANCOVA, we further investigated the genotype,
education, and genotype-by-education effects on nodal degree

in these significantly correlated nine regions. As shown in
Table 4, most regions (eight-ninths) exhibited significant ed-
ucation differences. Significant genotype differences were ob-
served in the bilateral CUN, TPOsup.R, and TPOmid.R (all
P < 0.015). Additionally, significant interaction effects were
observed in the CUN.L (F = 7.347, P = 0.008), CUN.R (F =
6.978, P = 0.010), TPOsup.R (F = 6.758, P = 0.011), and
TPOmid.R (F = 9.033, P = 0.003). Moreover, we determined
interaction differences on nodal degree in the bilateral CUN,
TPOsup.R, and TPOmid.R among normal aging, MCI and
AD, respectively (Fig. 4). Furthermore, TPOmid.R showed a
significant interaction effect in normal aging (F = 4.303, P =
0.052). No interaction effect was observed in MCI and AD.

Fig. 2 Scatter plots of the Spearman correlation between education and
global properties among the normal aging, MCI and AD. (a) Correlation
results in theAPOE ε4 noncarriers. (b) Correlation results in theAPOE ε4

carriers. Note: Blue: Normal Aging; Yellow: MCI, mild cognitive
impairment; Red: AD, Alzheimer’s disease. r, Spearman correlation
coefficient; P, P value (FDR-corrected)

Fig. 1 Results of the Spearman correlation between education and global
properties. The threshold value for establishing significance was set at
P < 0.05. (a) Results of the Spearman correlation between education and
global properties in APOE ε4 noncarriers and carriers. (b) The
associations in the normal aging, MCI and AD among the APOE ε4

noncarriers and APOE ε4 carriers. The color bar shown in a and b
represents the correction coefficient. Abbreviations: ε4-, APOE ε4
noncarriers; ε4+, APOE ε4 carriers; *, P < 0.05; **, P < 0.01; ***,
P < 0.001; MCI, mild cognitive impairment; AD, Alzheimer’s disease
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Discussion

We examined the resting-state functional network among in-
dividuals in normal aging,MCI and AD groups to evaluate the
effects of APOE genotype and the years of education on func-
tional brain networks. In APOE ε4 noncarriers, the years of
education were significantly, negatively associated with the
local efficiency, clustering coefficient, normalized clustering
coefficient, and small-worldness. Such associations reflect the
protective effects of education attainment. We further found
significant nodal degree correlations in brain regions mainly
located in the orbital part of the inferior frontal gyrus, temporal
pole and cuneus in APOE ε4 noncarriers in the normal aging

and MCI groups, especially the normal aging group.
Furthermore, property-related results were supported by sig-
nificant genotype-by-education interaction differences via
ANCOVA. In addition, interactions were found especially in
normal aging. Therefore, there are levels of protective effects
of education in the progression of AD, but they are greatly
affected by the presence of APOE ε4.

Years of education altered the global topologies
of functional network

The small-worldness topology is a fundamental principle of
the structural and functional organization of complex brain

Table 3 Results of the Spearman
correlation between education
and nodal degree

ALL Normal Aging MCI AD

r P r P r P r P

APOE ε4-

ORBinf.L −0.42 0.024 −0.36 0.438 −0.38 0.186 −0.81 0.991

PHG.L −0.40 0.026 −0.16 0.764 −0.53 0.036 −0.20 0.991

PHG.R −0.39 0.027 −0.51 0.238 −0.43 0.095 −0.20 0.991

AMYG.L −0.42 0.026 −0.72 0.049 −0.30 0.249 −0.40 0.991

TPOsup.R −0.39 0.027 −0.80 0.018 −0.26 0.341 −0.20 0.991

TPOmid.L −0.49 0.005 −0.38 0.413 −0.45 0.081 −0.78 0.991

TPOmid.R −0.60 <0.001 −0.73 0.045 −0.55 0.031 −0.49 0.991

CUN.L 0.41 0.020 0.55 0.202 0.37 0.183 0.23 0.991

CUN.R 0.47 0.007 0.46 0.300 0.46 0.089 0.72 0.991

APOE ε4+

ORBinf.L −0.14 0.892 0.41 0.969 −0.11 0.876 −0.29 0.962

PHG.L −0.31 0.769 −0.57 0.969 −0.40 0.545 −0.22 0.981

PHG.R −0.26 0.720 −0.30 0.969 −0.44 0.545 −0.16 0.981

AMYG.L −0.03 0.953 −0.21 0.969 −0.28 0.685 0.20 0.981

TPOsup.R 0.10 0.860 0.17 0.969 −0.09 0.896 0.32 0.962

TPOmid.L −0.22 0.844 −0.23 0.969 −0.19 0.770 −0.33 0.962

TPOmid.R −0.20 0.884 0.37 0.969 −0.47 0.495 −0.13 0.981

CUN.L 0.01 0.977 −0.07 0.969 −0.03 0.941 0.06 0.981

CUN.R 0.01 0.999 0.64 0.969 −0.04 0.941 0.12 0.981

Abbreviations: MCI mild cognitive impairment, AD Alzheimer’s disease, ε4- APOE ε4 noncarriers, ε4+ APOE
ε4 carriers, r Spearman correlation coefficient; P P value (FDR-corrected). Note: bold figures indicate P < 0.05

Table 2 Education and APOE
Genotype effects on global
properties

Matrixes Education effects
F (P value)

APOE genotype
F (P value)

Genotype-by-education Interaction
F (P value)

Eloc 4.018(0.048) 2.674(0.105) 2.871(0.093)

Cp 3.240(0.075) 0.641(0.425) 0.686(0.410)

γ 7.169(0.009) 4.271(0.041) 5.349(0.023)

σ 6.497(0.012) 5.930(0.017) 7.187(0.009)

Note: bold figures indicate P < 0.05. P value was obtained via a two-way analysis of covariance (ANCOVA) with
covariates of the years of education, gender, and age

Abbreviations: Eloc local efficiency, Cp clustering coefficient, γ normalized clustering coefficient, σ small-
worldness
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networks that has greatly impacted studies investigating
topological architectures using a systematic perspective in
healthy and diseased populations (Bullmore and Sporns
2009; Sporns 2011). The well-known small-worldness to-
pology refers to a large number of spatially distributed
network communities (integration) with high computations
in clustered connectivity (segregation). In addition, the to-
pological properties of the characteristic path length, nor-
malized characteristic path length and global efficiency rep-
resent the global integration of a network. Moreover, the
clustering coefficient, normalized clustering coefficient and
local efficiency are regarded as measures of the segregation
and error tolerance of a network. Small-worldness presents
a balance between integration and segregation, thus
representing information processing (Bullmore and Sporns
2009; Deco et al. 2015; Sporns 2011).

Education is considered a proxy measure of cognitive re-
serve that affects the structural and neural networks of the
brain (Barulli and Stern 2013; Perry et al. 2017; Posner and
Rothbart 2005; Stern 2006). Consistent with this notion, in
this study, the results of a negative association between higher
years of education and lower clustering coefficient, normal-
ized clustering coefficient and small-worldness reflected a de-
creased segregation of the functional network and reinforced
the fine balance between segregation and integration.
However, inconsistent with the present results, certain previ-
ous studies have reported a higher increase in the local effi-
ciency and clustering coefficient in individuals with higher
education levels (Marques et al. 2016; Marques et al. 2015).
This inconsistency is most likely because the years of educa-
tion differed among the subjects. Recently, Lenehan et al.
(2015) reviewed education moderations and found little con-
sistent evidence to support the assumption of the cognitive
reserve, and the effect of education was restricted to particular
subgroups or certain cognitive functions. Specifically, we
should consider that the educational years (with a mean of
16 years) of the participants in the present study were consid-
erably greater than those in former studies (with a mean of
5.37 years) (Lenehan et al. 2015; Marques et al. 2015).
Consequently, the potential protective effects of education
were no longer evident as the education level increases be-
yond the 8-year threshold (Lyketsos et al. 1999; Zahodne et al.
2015). Zahodne et al. (2015) proposed that early education
(i.e., up to 8 years) may promote aspects of development dur-
ing a sensitive period in childhood, which protects against
late-life cognitive decline. In contrast, subjects with a higher
level of education (i.e., 9 years and beyond) showed multiple
pathways that influenced brain function (Joo et al. 2017). A
20-year longitudinal study suggested that the initial decline in
cognition is associatedwith the immediate decline in dementia
in the lower-level education group. However, higher-level ed-
ucation protects against further cognitive decline for approxi-
mately 7 years until the pathology becomes more severe
(Amieva et al. 2014). These findings suggest that dimorphism
exists in the educational effects on cognition reserve.
Combined with our findings and previous reports, we suggest
a novel protective effect of education on functional networks
and cognition for these individuals with higher-level
education.

Effects of interaction between genotype
and education on global topologies

The dysfunction of functional network association in car-
riers of APOE ε4 has been previously demonstrated (Wang
et al. 2015; Wolk and Mahley 2010; Zhao et al. 2012).
However, to the best of our knowledge, our study is the
first to investigate the effects of APOE ε4 and protective
educational attainment on network properties by using

Fig. 3 Plots of regions on the cortical surface with significant
associations between education and the nodal degree on the cortical
surface of the APOE ε4 noncarriers. The threshold was P < 0.05, FDR-
corrected. Significantly associated regions in all individuals (a), Normal
Aging (b), and MCI patients (c). There was no such correlation in the
APOE ε4 noncarriers with AD and the APOE ε4 carriers. The spheres in
red indicate positive correlations between education and nodal degree,
and those in blue indicate negative correlations. The size of the spheres
indicates the correlation coefficient. Nodes are mapped onto cortical
surfaces using BrainNet Viewer software (Xia et al. 2013).
Abbreviations: ε4-, APOE ε4 noncarriers; ε4+, APOE ε4 carriers; MCI,
mild cognitive impairment; AD, Alzheimer’s disease
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fMRI. Significant associations were observed between the
years of education and the local efficiency, clustering coef-
ficient, normalized clustering coefficient and small-
worldness in the APOE ε4 noncarriers, particularly in the
normal aging and MCI groups, whereas such associations
were absent in the ε4 carriers (Fig. 1). As mentioned
above, correlated results indicated that APOE ε4 noncar-
riers with higher education showed lower local efficiency,
clustering coefficient, normalized clustering coefficient and

small-worldness, suggesting lower segregation of functional
networks and reinforcement of the fine balance between
segregation and integration. Moreover, these protective ef-
fects of education were reduced or absent in ε4 carriers,
which may caused by severe brain atrophy (den Heijer
et al. 2002; Manning et al. 2014) and dysfunction in func-
tional networks with an increased clustering coefficient in
carriers (Mohammed et al. 2015; Wang et al. 2015; Wolk
and Mahley 2010; Zhao et al. 2012).

Fig. 4 Scatter plots of the Spearman correlation between education and
nodal degree among the normal aging, MCI and AD. We found nine
educational correlated regions in nodal degree (Fig. 3a). Here, we only
present four regions that observed significant genotype-by-education

interaction effects among these nine regions via ANCOVA. Note: Blue:
Normal Aging; Yellow: MCI, mild cognitive impairment; Red: AD,
Alzheimer’s disease. r, Spearman correlation coefficient; P, P value
(FDR-corrected)

Table 4 Education and APOE
Genotype effects on nodal degree Matrixes Education effects

F (P value)
APOE genotype
F (P value)

Genotype-by-education Interaction
F (P value)

ORBinf.L 5.563(0.020) 1.506(0.223) 1.943(0.166)

PHG.L 12.181(0.001) 1.203(0.275) 1.097(0.297)

PHG.R 10.859(0.001) 1.468(0.228) 1.389(0.241)

AMYG.L 8.453(0.004) 3.682(0.058) 3.492(0.064)

TPOsup.R 2.785(0.098) 6.585(0.012) 6.758(0.011)

TPOmid.L 11.85(0.001) 3.265(0.074) 3.440(0.066)

TPOmid.R 22.551(<0.001) 9.921(0.002) 9.033(0.003)

CUN.L 5.956(0.016) 7.248(0.008) 7.347(0.008)

CUN.R 4.414(0.038) 6.397(0.013) 6.978(0.010)

Note: bold figures indicate P < 0.05. P value was obtained via a two-way analysis of covariance (ANCOVA) with
covariates of the years of education, gender, and age

Abbreviations: ORBinf.L the left orbital part of the inferior frontal gyrus, PHG the bilateral parahippocampal
gyrus, AMYG.L, the left amygdala, TPOsup.R the right superior temporal gyrus (temporal), TPOmid the bilateral
middle temporal pole (temporal), CUN the bilateral cuneus
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We propose two reasonable explanations for these protective
effects in APOE ε4 noncarriers. On the one hand, the APOE ε4
allele has been shown to inhibit neuronal growth, survival,
branching and extension in both in vitro and in vivo studies
(Mohammed et al. 2015; Nathan and Bellosta 1994; Nathan
et al. 2002). These results suggest that the APOE ε4 allele may
influence normal development and thus may block the putative
stimulating educational effects on neuronal growth (Filippini
et al. 2011; Mahley et al. 1995). These hypotheses are supported
by reports showing that education has a protective effect on
aging or brain pathological changes without observable deficits
in cognition (Roe et al. 2007; Yasuno et al. 2015). On the other
hand, according to the protective theory, the APOE ε4 allele
disrupts educational protection. Education or cognitive reserve
is known to protect against aging and pathological changes dur-
ing cognitive decline, brain atrophy, and dysfunction in brain
networks (Arenaza-Urquijo et al. 2013; Cheng 2016; Marques
et al. 2016; Mungas et al. 2018; Yasuno et al. 2015). APOE ε4
carriers have been reported to have a less optimal topological
organization of brain networks in both MCI and AD
(Mohammed et al. 2015; Serra et al. 2017; Yao et al. 2015).
Thus, the topological organization of functional brain networks
influenced by education could be maintained even at an older
age; however, this effect is likely reduced by the APOE ε4 allele.
Finally, these findings regarding the topological properties sug-
gest that the protective effects of education could be modified by
the pathogenic mechanisms underlying the APOE allele.

Effects of interaction between genotype
and education on nodal degree

Consistent with the global properties, significant associations
between nodal degree and years of education were observed
only in the APOE ε4 noncarriers but not in the carriers. The
subjects with higher education exhibited a lower nodal degree
in the temporal pole and inferior frontal gyrus (Fig. 3).
Previous studies have demonstrated that these education-
associated regions belong to the default mode network
(DMN), including the left AMYG, the bilateral PHG, the right
TPOsup and the bilateral TPOmid (Huang et al. 2016; J.Wang
et al. 2015). A recent review also suggested that the cognitive
reserve was associated with the DMN (Huang et al. 2016). For
example, the studies reported that the connectivity between
the dorsal attention network and DMN was associated with a
weaker memory and differed between the MCI and normal
aging groups (Franzmeier et al. 2017). Moreover, the regions
in the medial temporal lobe are mainly involved in memory,
including the functions of encoding and retrieval (Jackson and
Schacter 2004; Spaniol et al. 2009), while the left inferior
frontal gyrus is mainly associated with attention, which might
regulate the memory function (Lundstrom et al. 2005; Spaniol
et al. 2009). The nodal efficiency of the PHG.R in the white
matter network mediates the effect of APOE ɛ4 on memory

function (de Chastelaine et al. 2011). Higher education was
found to be associated with lower FDG-PET metabolism in
the temporo-parietal and ventral prefrontal brain areas (Ewers
et al. 2013). These results may suggest that education can
affect the functional connectivity and network properties of
the brain regardless of the function of memory.

In addition, we demonstrated a positive association be-
tween the years of education and the nodal degree in the bi-
lateral cuneus, which plays a role in visual information pro-
cessing (Holmes et al. 2005; Vanni et al. 2001). Higher edu-
cation leads to high-efficiency processing of visual informa-
tion. In a previous study, the cognitive reserve exhibited a
positive relationship with the left cuneus in the elderly com-
pared with that in young subjects (Scarmeas et al. 2003). In
another study, Tucker et al. also found a positive association
between cognitive reserve and the right cuneus (Tucker and
Stern 2011). This finding suggests that the protective effects of
education are mainly present in the cuneus areas.

The APOE ε4 carriers and noncarriers showed considerably
different associations with respect to education in the occipital
and temporal lobes. We hypothesize that the difference observed
in the associations might be due to the different patterns of brain
damage between APOE ε4 noncarriers and carriers (den Heijer
et al. 2002; Manning et al. 2014; Wolk and Mahley 2010). The
noncarriers showed more frontoparietal atrophy (Wolk and
Mahley 2010). In contrast, the APOE ε4 carriers exhibited great-
er hypometabolism and atrophy in the occipital and temporal
lobes, especially the medial temporal lobe (MTL, including the
hippocampus and PHG) and temporal pole (Agosta et al. 2009;
den Heijer et al. 2002; Kim et al. 2015; Manning et al. 2014;
Wolk and Mahley 2010). Moreover, through high-resolution
structural imaging and diffusion tensor imaging techniques,
one study showed that compared to noncarriers, ε4 carriers had
a greater decrease in the parahippocampal white matter volume,
suggesting that APOE ε4 might influence parahippocampal
white matter changes (Honea et al. 2009). These regions mainly
coincide with education-associated regions observed in APOE
ε4 noncarriers but not in APOE ε4 carriers. Previous studies
have reported that APOE ε4 carriers have greater Aβ deposition
(Farlow et al. 2004; Honea et al. 2009; Jack et al. 2015; Liu et al.
2013) that may causemore severe brain atrophy (denHeijer et al.
2002) and increase the risk of cognitive impairment and demen-
tia (Jack et al. 2015). These results indicate that the educational
effects prevailing in these regions are reduced by Aβ deposition
in individuals with APOE ε4 (Arenaza-Urquijo et al. 2017; Jack
et al. 2015; Yasuno et al. 2015).

Limitations

Although the present study demonstrated that the significant
correlations between education and the functional network
properties persist only in APOE ε4 noncarriers, there are some
limitations in this study. First, this study evaluated a small
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number of subjects, especially in the normal aging and AD
groups. In the ADNI2 database, only 110 subjects with initial
or first screening visits had both fMRI and education informa-
tion. Due to these limitations, determining the educational
differences among the normal aging, MCI and AD groups in
APOE carriers and noncarriers is challenging. Given that the
data of ADNI subjects are continuously updated, future work
is encouraged to assess a larger sample size and verify our
current findings. Second, the range of the number of years
of education was between 10 and 20. Thus, our study mainly
included subjects who had attained a high-level education. As
discussed above, the number of years of education might have
a demographic influence on functional network and cognition.
In individuals with low-level and high-level education attain-
ment, the differences in the educational effects on the func-
tional network with respect to the APOE genotype need to be
further investigated.

Conclusions

In summary, we investigated the effects of education on func-
tional brain networks among normal aging, MCI and AD
groups in bothAPOE ε4 noncarriers and carriers using a graph
theoretical analysis and resting-state fMRI. Our results indi-
cated that the effects of education on the global and nodal
properties of functional brain networks were mainly observed
in the ε4 noncarriers but not in the ε4 carriers. The associa-
tions were mainly observed in normal aging and were reduced
in MCI and AD. Our findings demonstrate that the protective
effects of education persist in APOE ε4 noncarriers but were
attenuated or reduced in ε4 carriers and diminished by the
progression of AD.
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